

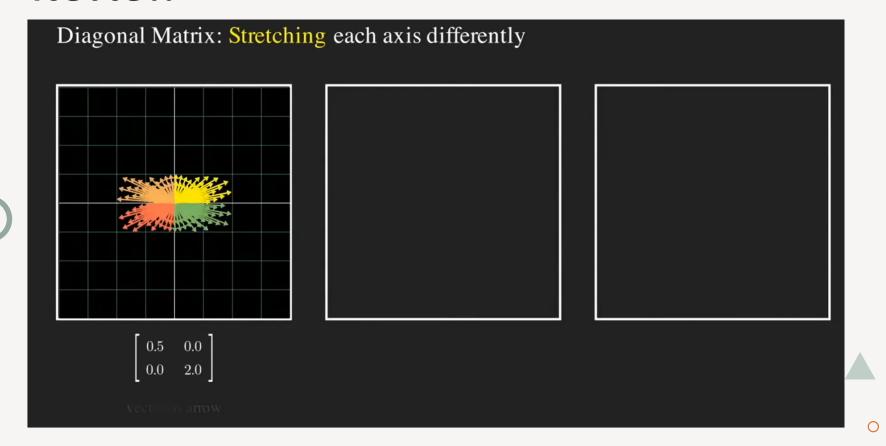
Eigenvalue – Eigenvector

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>
Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

Review



01

Introduction

Motivation

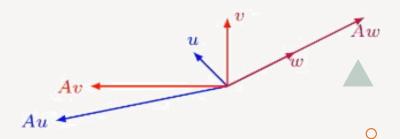
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$

$$u = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \Rightarrow Au = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \end{bmatrix}$$

$$v = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \Rightarrow Av = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -4 \\ 0 \end{bmatrix}$$

$$w = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \Rightarrow Aw = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

□ Vector "w" keeps the straight, but changes the scale.



Definition

Definition

An eigenvector of a square $n \times n$ matrix A is nonzero vector v such that $Av = \lambda v$ for some scalar λ . A scalar λ is called an eigenvalue of A if there is a nontrivial solution v of $Av = \lambda v$; such an v is called an eigenvector corresponding to λ .

An eigenvector must be nonzero, by definition, but an eigenvalue may be zero.

Example

☐ Show that 7 is an eigenvalue of matrix B, and find the corresponding eigenvectors.

$$\mathsf{B} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

Eigenspace

Note

 λ is an eigenvalue of an $n \times n$ matrix:

$$Av = \lambda v \Rightarrow (A - \lambda I)v = 0$$

The set of all solutions of above is just the null space of the matrix $A - \lambda I$. So this set is the subspace of \mathbb{R}^n and is called the eigenspace of A corresponding to λ . The eigenspace consists of the zero vector and all the eigenvectors corresponding to λ .

Eigenspace: A vector space formed by eigenvectors corresponding to the same eigenvalue and the origin point. $span\{corresponding\ eigenvectors\}$

Definitions

Note

- $\Box Av = \lambda v \Rightarrow Av \lambda vI = 0 \Rightarrow (A \lambda I)v = 0 \quad v \neq 0$
 - $\circ v \in N(A \lambda I)$
 - \circ $A \lambda I$ must be singular.
 - o Proof that for finding the eigenvalue we should solve the determinate zero equation. Look at nullspace, rank and nullity theorem, singular matrix, and det zero!
- \Box Characteristic polynomial $\det(A \lambda I)$
- If λ is an eigenvalue of A, then the subspace $E_{\lambda} = \{\text{span}\{v\} \mid \text{Av} = \lambda v\}$ is called the eigenspace of A associated with λ . (This subspace contains all the span of eigenvectors with eigenvalue λ , and also the zero vector.)
- ☐ Eigenvector is basis for eigenspace.
- \square Set of all eigenvalues of matrix is $\sigma(A)$ named spectrum of a matrix

Definitions

Note

- □ Instead of $\det(A \lambda I)$, we will compute $\det(\lambda I A)$. Why?
 - $o \det(A \lambda I) = (-1)^{n} \det(\lambda I A)$
 - \circ Matrix $n \times n$ with real values has \cdots eigenvalues.

Finding Eigenvalues and Eigenvectors

Let A be an $n \times n$ matrix.

- 1. First, find the eigenvalues λ of A by solving the equation $\det(\lambda I A) = 0$.
- 2. For each λ , find the basic eigenvectors $X \neq 0$ by finding the basic solutions to $(\lambda I A) X = 0$.

To verify your work, make sure that $AX=\lambda X$ for each λ and associated eigenvector X.

Example

Example

Find eigenvalues and eigenvectors, eigenspace (E), and spectrum of matrix $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$:

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & -2 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 - 3\lambda + 2 = 0 \Rightarrow \begin{cases} \lambda_1 = 1 \\ \lambda_2 = 2 \end{cases}$$
$$(A - \lambda_1 I)q_1 = 0 \Rightarrow \begin{cases} A_1 = 1 \\ 1 & 0 \end{cases} \Rightarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Eigenvalues={1,2}

Eigenvectors=
$$\{\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix}\}$$

$$E_1(A) = span\{\begin{bmatrix} 1\\1 \end{bmatrix}\} E_2(A) = span\{\begin{bmatrix} 2\\1 \end{bmatrix}\}$$

$$\sigma(A) = \{1, 2\}$$

$$AQ = Q\Lambda \Rightarrow \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

02

Eigenvalues

Expanding the Characteristic equation of A to polynomial form

Theorem

To have (1) scalar for largest degree instead of $|A - \lambda I|$, consider $|\lambda I - A|$

$$f(\lambda) = |\lambda \mathbf{I} - \mathbf{A}| = \lambda^{n} + c_{n-1}\lambda^{n-1} + \dots + c_{1}\lambda + c_{0}$$
 Proof?

• The n roots of this polynomial are eigenvalues!

• What is c_{n-1} ?

$$\circ$$
 $c_{n-1} = -trace(A)$

• What is c_0 ?

$$c_0 = \det(-A) = (-1)^n \det(A)$$

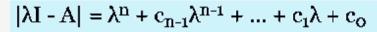
Sum and Product of eigenvalues

Theorem

If A is an $n \times n$ matrix, then the sum of the n eigenvalues of A is the trace of A.

(coefficient c_{n-1} in expanded characteristic equation)

Other view: $f(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n)$



Proof?

Theorem

If A is an $n \times n$ matrix, then the product of the n eigenvalues is the determinant of A.

(coefficient c_0 in expanded characteristic equation)

Proof?

Determinant and Eigenvalue

Theorem

$$0 \in \sigma(A) \Leftrightarrow |A| = 0$$

Proof?

Conclusion: The Invertible Matrix Theorem

Let A be an $n \times n$ matrix. Then A is invertible if and only if:

- \square The number 0 is not an eigenvalue of A.
- \square The determinant of A is not zero.

An Important Theorem!

Theorem

The eigenvalues of a triangular (upper/lower/diagonal) matrix are the entries on its main diagonal. For the diagonal matrix the eigenvectors are e_i s. For upper /lower matrices, Q matrix of $AQ = Q\Lambda$ will be upper/lower triangular matrix.

Proof?

O

Real Eigenvalues of different matrices

- Projection matrix
 - 0 0,1
 - o If rank(P)=r with n columns, what are the repetition of the eigenvalues?
 - 0: n-r 1:r
- Reflection matrix
 - 0 1,-1
- Permutation matrix
 - 0 1,-1

O

Characteristic Equation

Example

Find the eigenvalues with their repetition and eigenvectors:

$$\Box A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 \Box The characteristic polynomial of a 6 × 6 matrix is $\lambda^6 - 4\lambda^5 - 12\lambda^4$.

$$\square B = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$

$$\square \ C = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$

$$\square D = \begin{bmatrix} -2 & 1 \\ -2 & 0 \end{bmatrix}$$

Eigenvalues of matrix products

Theorem

The nonzero Eigenvalues of AB equal to the nonzero eigenvalues of BA.

0

Why Diagonalization?

Conclusion from pervious theorems

• Theorem "The eigenvalues of a triangular (upper/lower/diagonal) matrix are the entries on its main diagonal." can leads to if we have matrix A and B that $D=B^{-1}AB$ be a diagonal matrix:

$$\det(\lambda I - D) = \det(\lambda I - B^{-1}AB)$$

Proof?

Similarity and Diagonalizable

Definition

Two n-by-n matrices A and B are called similar if there exists an invertible n-by-n matrix Q such that

$$A = Q^{-1}BQ$$

Definition

A matrix A is said to be diagonalizable if A is similar to a diagonal matrix D: $D = Q^{-1}AQ$, that is, if $A = QDQ^{-1}$ for some invertible matrix Q and some diagonal matrix D.

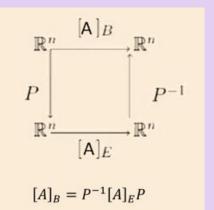
Relation between similar matrix and change of basis!

Note

☐ A square matrix for a linear transform

$$A: n \times n \qquad T: R^n \to R^n \quad \Rightarrow \quad \mathbf{Aa} = \mathbf{b} \qquad a, b \in R^n$$

$$a = P\bar{a} \\ b = P\bar{b} \end{cases} \Rightarrow AP\bar{a} = P\bar{b} \Rightarrow P^{-1}AP\bar{a} = \bar{b} \Rightarrow \bar{A}\bar{a} = \bar{b}$$



- \Box Linear transform in new basis $\bar{A} = P^{-1}AP$
- $oldsymbol{\Box}$ $ar{A}$ is the standard matrix of linear transform in new basis.
- Similarity Transformation

Think!

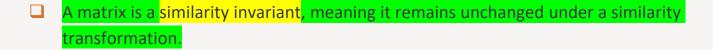
Warnings

1. The matrices

$$\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

are not similar even though they have the same eigenvalues.

2. Similarity is not the same as row equivalence. (If A is row equivalent to B, then B = EA for some invertible matrix E.) Row operations on a matrix usually change its eigenvalues.



- Why trace is a similarity invariant?
- Why rank is a similarity invariant?

Facts

Theorem

- Similar matrices have:
 - same determinant
 - equal characteristic equations
 - o same trace
 - o same rank
 - inverse of A and B are similar (if exists)

Proof?

Find matrix Q in similarity formula

Note

Two n-by-n matrices A and B are called similar if there exists an invertible n-by-n matrix Q such

that $A = Q^{-1}BQ$. One solution for Q is the matrix whose columns are the eigenvectors of B.

Example

Find the similarity matrix of A

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Solution:

$$B = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix}$$

Diagonalizable

Definition

A matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that is, if $A = QDQ^{-1}$ for some invertible matrix Q and some diagonal matrix D.

Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

Corollary

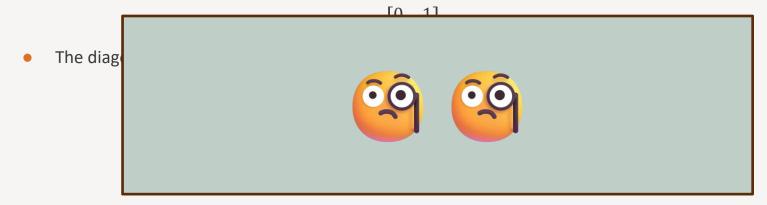
 \square An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

- ☐ Distinct eigenvalues -> eigenvectors are Linear Independent
- ☐ Duplicate eigenvalues -> <a> ○
- Not all matrices are diagonalizable.
 - o Example:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

• The diagonalizing matrix S is not unique.

- ☐ Distinct eigenvalues -> eigenvectors are Linear Independent
- ☐ Duplicate eigenvalues -> <a> ○
- Not all matrices are diagonalizable.
 - o Example:



 \supset

$$A = \begin{pmatrix} 0 & -6 & -4 \\ 5 & -11 & -6 \\ -6 & 9 & 4 \end{pmatrix}$$

o Its eigenvalues are −2, −2 and −3 (repeated eigenvalues)

$$\begin{pmatrix} 0 & -6 & -4 \\ 5 & -11 & -6 \\ -6 & 9 & 4 \end{pmatrix} \begin{pmatrix} 0 & 0 & 2 \\ 0 & 2 & -1 \\ 0 & -3 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 2 & -1 \\ 0 & -3 & 3 \end{pmatrix} \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -6 \\ 0 & -4 & 3 \\ 0 & 6 & -9 \end{pmatrix}$$

Diagonal Matrix

S is not invertible!

$$B = \begin{pmatrix} 4 & 8 & -2 \\ -3 & -6 & 1 \\ 9 & 12 & -5 \end{pmatrix}$$

○ Its eigenvalues are -2, -2 and -3 (repeated eigenvalues)

$$BR = RD$$

$$\begin{pmatrix} 4 & 8 & -2 \\ -3 & -6 & 1 \\ 9 & 12 & -5 \end{pmatrix} \begin{pmatrix} 4 & 1 & 2 \\ -3 & 0 & -1 \\ 0 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 1 & 2 \\ -3 & 0 & -1 \\ 0 & 3 & 3 \end{pmatrix} \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix} = \begin{pmatrix} -8 & -2 & -6 \\ 6 & 0 & 3 \\ 0 & -6 & -9 \end{pmatrix}$$

Diagonal Matrix

R is invertible!

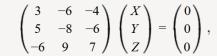
0

For matrix

$$B = \begin{pmatrix} 4 & 8 & -2 \\ -3 & -6 & 1 \\ 9 & 12 & -5 \end{pmatrix}$$
So what's going on here?
$$\begin{pmatrix} 4 & 8 & -1 \\ -3 & -6 & 1 \\ 9 & 12 & -5 \end{pmatrix} \begin{pmatrix} 0 & 3 & 3 \end{pmatrix} \begin{pmatrix} 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} 0 & -6 & -9 \end{pmatrix}$$
Diagonal Matrix

R is invertible!

Details for matrix A: (i) For the eigenvalue -3, we have



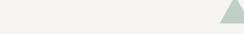
which straightforwardly gives the eigenvector

$$\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$

(ii) For the repeated eigenvalue -2, we have

$$\begin{pmatrix} 2 & -6 & -4 \\ 5 & -9 & -6 \\ -6 & 9 & 6 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

which equally straightforwardly gives the eigenvector



$$\begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix}$$
.

- (i) For the eigenvalue -3, we have
 - Details for matrix B:

which, as before, straightforwardly gives the eigenvector

(ii) This time, for the repeated eigenvalue −2, we have

Now, here things are different, because all three of the rows of this matrix may be reduced to the equation

$$\begin{pmatrix} 7 & 8 & -2 \\ -3 & -3 & 1 \\ 9 & 12 & -2 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

$$\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
.

$$\begin{pmatrix} 6 & 8 & -2 \\ -3 & -4 & 1 \\ 9 & 12 & -3 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$3X + 4Y - Z = 0.$$

This represents a plane in 3D space, and any vector in this plane is an eigenvector. We may therefore form our diagonalising matrix S out of

Details for matrix B:

 $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$

together with any two non-parallel vectors of the form

 $\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$

that satisfy

3X + 4Y - Z = 0;

that is, that are perpendicular to the vector

 $\begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}$.

Both of the choices

$$S = \begin{pmatrix} 4 & 1 & 2 \\ -3 & 0 & -1 \\ 0 & 3 & 3 \end{pmatrix},$$

$$S = \begin{pmatrix} 5 & 3 & 2 \\ -3 & -3 & -1 \\ 3 & -3 & 3 \end{pmatrix}$$

will work fine, as will infinitely many others.

General considerations

- 1. In general, any n by n matrix whose eigenvalues are distinct can be diagonalized.
- 2. If there is a repeated eigenvalue, whether or not the matrix can be diagonalized depends on the eigenvectors.
 - (i) If there k<n eigenvectors (up to multiplication by a constant), then the matrix cannot be diagonalized.
 - (ii) If the unique eigenvalue corresponds to an eigenvector e, but the repeated eigenvalue corresponds to an entire plane, then the matrix can be diagonalised, using e together with any two vectors that lie in the plane.
- 3. If all n eigenvalues are repeated, then things are much more straightforward: the matrix can't be diagonalized unless it's already diagonal.

Power of matrix

Example

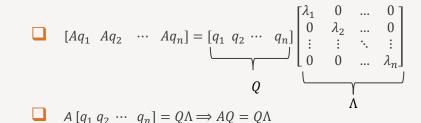
Find A^n ?

O

Conclusion

Another Notation

- \square With similarity transformation Q, matrix A changed to a diagonal matrix $diag(\lambda_1,\lambda_2)$
- ☐ Matrix *A* has n linear independent eigenvectors



$$\Box$$
 $A = Q\Lambda Q^{-1}$

